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Abstract—Global fixed-priority (G-FP) scheduling is a widely
applied scheduling policy for real-time systems running on
multiprocessor platforms. The state-of-the-art in priority assign-
ment for G-FP follows one of two approaches. The first is to use
a simple heuristic for priority assignment that works with any
(thus the most accurate) schedulability analysis. The second is to
leverage Audsley’s polynomial-time optimal priority assignment
(OPA) algorithm, which can only accommodate a less accurate
analysis that satisfies the compatibility conditions required by
OPA. In this paper, we study this critical issue and present
a novel algorithm. We first use the concept of response time
estimation range to build a new priority assignment framework,
which is optimal with a more accurate schedulability analysis
than OPA since its compatibility conditions are much weaker
than those of OPA. This new frontier on the second approach
is then judiciously combined with the first approach to take
advantage of both. We evaluate the effectiveness of the proposed
algorithm with various task sets. Compared with existing ap-
proaches, our algorithm always achieves the highest acceptance
ratio and can outperform them by 25% on average.

Index Terms—Global Fixed Priority Scheduling, Response
Time Analysis, Response Time Estimation Range, Optimization

I. INTRODUCTION

THE widespread adoption of multiprocessors in real-
time systems application has inspired many research

studies on the scheduling policies for multiprocessor plat-
forms. Among them, global fixed-priority (G-FP) scheduling
is a popular choice due to its advantages of application-
transparent task migration and load balancing across all
processors [1]. In G-FP, each task is assigned with a static
priority that applies to all its instances. At runtime, tasks
are selected for execution based on their priorities, and they
are allowed to execute on any processor and migrate from
one processor to another [2].

The problem of priority assignment for G-FP faces two
intertwined challenges [3]: (1) an analysis to check system
schedulability, where the problem of exact schedulability for
G-FP is proven to be NP-hard [4], and (2) the identification
of the optimal priority order among a total of n! possible
ones, where n is the number of tasks. For the latter,
Audsley’s optimal priority assignment (OPA) algorithm [5]
is a well-known efficient algorithm that only explores O(n2)
priority orders. However, it is only “optimal” with respect
to the analysis that satisfies its compatibility conditions: in
particular the schedulability of a task only depends on the
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set of its higher-priority tasks (or the set of lower-priority
tasks), but not on the relative orders among those tasks.

Based on their compatibility with OPA, the schedulability
analyses for G-FP can be classified into two categories:
(1) OPA-compatible tests or (2) OPA-incompatible ones.
Deadline Analysis (DA test) [6] and the improved Deadline
Analysis with Limited Carry-in (DA-LC) [2] are two examples
under the first category, both of which use the deadline
of higher priority tasks to bound their interferences. In
contrast, the Response Time Analysis (RTA test) [7] and the
improved RTA test with Limited Carry-in (RTA-LC) [8] utilize
the response time upper bounds of higher-priority tasks,
which depend on the relative order among them. Recently,
a new analysis called EPE-ZLL is proposed to improve
upon RTA-LC by excluding the parallel execution of higher
priority tasks in the calculation of the interference [9].
RTA test, RTA-LC, and EPE-ZLL all violate the compatibility
conditions of OPA.

Since many of the schedulability tests are not OPA-
compliant, the current proposals for priority assignment
in G-FP follow two different directions. The first is to
use OPA together with an OPA-compliant analysis. This
approach has to sacrifice accuracy in the schedulability
analysis in order to leverage OPA. As far as we know, the
most accurate analysis that is OPA-compliant is DA-LC [2].
Instead, the second approach settles with a suboptimal
priority assignment algorithm such as Deadline Monotonic
Priority Ordering (DMPO), Deadline Minus Computation
Monotonic (D-CMPO), and DkC [2], [10], [11], in favor of
accommodating an OPA-incompatible analysis that is much
more accurate than DA-LC.

In this paper, we propose a novel algorithm for priority
assignment in G-FP. We first push the frontier for the OPA-
based approach, by developing an optimization framework
that is optimal for a broader range of schedulability analysis
than OPA. In other words, its compatibility conditions are
much weaker than those of OPA, which makes it possible
to work with RTA-LC, a significantly more accurate analysis
than DA-LC. We observe that this new frontier for the
first approach, called MITER (Maximum Unschedulable
response Time Estimation Range) with RTA-LC, is now
performing better than the best of the second approach
(DkC with EPE-ZLL) under low system utilization. We then
develop a hybrid algorithm that works in a similar way as
OPA but can use any schedulability test. Specifically, while
assigning priority at a certain level, we use MITER with RTA-
LC to estimate the priority order of higher priority tasks
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when the system utilization is low and use DkC with EPE-
ZLL when the utilization is high. This judiciously combines
the strengths of both approaches, achieving better schedu-
lability than the two across all system settings.

We organize the rest of the paper as follows. Section II
reviews the related work on G-FP. Section III introduces
the system model. Section IV describes the concepts and
properties related to the MITER optimization framework.
Section V presents the proposed hybrid priority assignment
algorithm for G-FP scheduling. Section VI conducts exper-
iments to compare our approach with the state-of-the-art
methods. Finally, Section VII concludes the paper.

II. RELATED WORK

Here we only provide a review of the most recent and
relevant research results for G-FP. For some of the more
classical results, the readers are referred to [1], [12].

Compared to single-processor schedulability, the prob-
lem of exact schedulability for G-FP on a multiprocessor
platform is far more challenging since the critical instant
is unknown. As such, the research focus is to develop
sufficient-only schedulability analyses and improve their
accuracy. Andersson et al. propose a simple response time
upper bound for tasks with constrained deadlines [13].
Bertogna et al. develop the DA test [6] where the inter-
ference from a carry-in job is upper bounded using its
deadline. RTA test instead uses the carry-in job’s worst-
case response time to bound its interference [7]. Guan et
al. propose RTA-LC [8], an improvement over RTA test by
bounding the number of carry-in jobs using the idea from
Baruah [14]. Davis et al. [2] use the same idea to improve DA
test and derive DA-LC. Zhou et al. present an improvement
over RTA-LC called ZLL [15], by observing that part of the
carry-in workload needs to be completed earlier, while RTA-
LC assumes they are executed as late as possible. Later Zhou
et al. propose a new method, henceforth denoted as EPE-
ZLL, by excluding the parallel execution in the calculation
of all interferences (not just those from carry-in jobs) [9].
There are also other sufficient-only schedulability tests in
the literature such as [16], [17], but EPE-ZLL is demon-
strated to achieve the best performance among them [9].

There are a few exact schedulability tests available, but
they are either limited to the case of strictly periodic
tasks [18], or time- and memory-consuming thus only
practical for analyzing small tasksets (no more than 13
tasks) [19]. Cucu and Goossens derive an exact analysis for
periodic tasks by simulating the task executions [18]. Baker
et al. propose an exact schedulability test for sporadic tasks
with brute-force search for feasible system states [20]. Boni-
faci et al. improve this work by traversing a state transition
graph and searching for an unschedulable state [4]. In [21],
Burmyakov et al. improve the work in [4] by cutting down
the state space for analysis. In [19], they further exploit the
state-pruning idea to obtain a speedup of 2-3 magnitudes
compared to Bonifaci’s test. As a different approach than [4],
[19], [20], [21], Sun et al. model the schedulability of G-FP
as a linear hybrid automaton [22].

For priority assignment in G-FP, there is no known
algorithm that is both efficient and compatible with the
most accurate schedulability test. Cucu uses exhaustive
search to find the optimal priority assignment policy for
periodic tasks [23], requiring to check all n! possible priority
orderings where n is the number of tasks. Audsley’s OPA
algorithm only checks O(n2) priority orders [5], but it comes
with a set of compatibility conditions [2]. As far as we know,
the most accurate analysis that is compatible with OPA is
DA-LC test [2]. Also, various heuristic priority assignment
policies are applied to G-FP, including DMPO [10], D-
CMPO [11], and DkC [24]. In DMPO [10], the smaller the
task deadline, the higher the priority. In D-CMPO [11], the
smaller the difference between deadline and worst-case ex-
ecution time, the higher the priority. DkC is a variant of D-
CMPO that includes an extra parameter k, which depends
on the number of processors [24]. These heuristics [10],
[11], [24] can be combined with any schedulability test.
Recently, Lee et al. proposed a machine learning (ML)
framework [25], which requires the incremental construc-
tion of samples. It may become hard to infer a feasible
priority assignment when n is large.

If we look beyond G-FP and review the approaches for
priority assignment in other types of real-time systems,
an authoritative survey can be found in [3]. In particular,
when Audsley’s algorithm is not optimal (either because the
schedulability analysis violates its compatibility conditions,
or the problem involves an objective function or other con-
straints), the state-of-the-art approaches may be classified
into four categories. The first is to leverage meta-heuristics
such as genetic algorithm (e.g., [26]). We compare with
ML, possibly the most advanced method in this category
and demonstrate that our approach may be better. The
second is to develop problem specific heuristics (e.g., [27],
[28], [29]). This category often relies on certain properties
in the system and cannot easily carry over to G-FP. The
third category is to directly employ standard optimization
frameworks, including BnB (e.g., [30]) and Integer Linear
Programming (ILP) (e.g., [31]). However, besides the poten-
tial scalability issue, frameworks such as ILP may not be
applicable to priority assignment in G-FP. For example, EPE-
ZLL lacks an analytical form to calculate the interferences
from higher priority tasks [9]. The fourth category is to
leverage Audsley’s algorithm and develop domain-specific
frameworks to optimize real-time systems [32], [33], [34],
[35]. However, the status quo is that they are all limited
to systems where the exact schedulability analysis is still
compliant with Audsley’s algorithm. Thus for priority as-
signment in G-FP, the frameworks in [32], [33], [34], [35]
are no longer applicable.

III. SYSTEM MODEL AND PRELIMINARIES

We consider a real-time application consisting of n pe-
riodic or sporadic tasks Γ = {τ1,τ2, ...τn} scheduled on m
identical processors under global fixed priority schedul-
ing algorithm. Each task τi is characterized by a tuple
〈Ci ,Ti ,Di 〉, where Ci is its Worst-Case Execution Time
(WCET), Ti is the period or minimum inter-arrival time,
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and Di is the deadline. We assume that the tasks have
constrained deadlines (Di ≤ Ti ). Since all events in the
system happen at integer clock ticks [9], we assume that
these parameters are all positive integers. The utilization
of task τi is defined as Ui = Ci

Ti
and the total utilization

of the system is U = ∑n
i=1 Ui . Each task τi is associated

with a unique priority level πi . For two tasks, τi and τ j ,
if πi > π j , then task τi has a higher priority than τ j . We
denote hp(i ) = {τ j |π j > πi } (resp. l p(i ) = {τ j |π j < πi }) as
the set of tasks with priority higher (resp. lower) than τi .
Given a taskset Γ, we aim to find a schedulable task priority
assignment P such that all tasks meet their deadline. The
task worst-case response time (or in short, response time)
is denoted as Ri for each task τi .

A. Schedulability Analysis

We now provide a summary of the response time anal-
yses. We consider sufficient-only schedulability analysis
methods since all the exact analysis methods for sporadic
tasks suffer from the issue of high computational complex-
ity and can only be practical for analyzing a small taskset
(up to 13 tasks) [19]. The problem of priority assignment
may involve analyzing the schedulability of a large number
of design alternatives.

Definition 1. Workload [7], [8]. The workload W j (a,b) of
a task τ j in an interval [a,b) is the accumulated execution
time of τ j within the interval [a,b).

Definition 2. Interference [7], [8]. The interference I j (a,b)
from a task τ j on the target task τi over a time interval
[a,b) is the part of the workload of τ j that can actually
prevent τi from executing.

The workload consists of three different parts: body,
carry-in, and carry-out. The body workload refers to the
contribution of all jobs with both release time and deadline
in the interval; each job of τ j contributes to the workload
in [a,b) with a complete execution time C j . The carry-in
workload is the contribution of at most one job with its
release time before a and deadline in [a,b). The carry-out
workload is the contribution of at most one job with its
release time in [a,b) and deadline after b.
DA Test [6]. DA test is based on the observation that the
maximum interference could occur when the carry-in job is
executed as late as possible and finishes at its deadline. An
upper bound on the workload of task τ j in a time interval
of length l is derived as

W D
j (l ) = N D

j (l ) ·C j +min
(
C j , l +D j −C j −N D

j (l ) ·T j

)
(1)

where N D
j (l ) =

⌊
l+D j −C j

T j

⌋
denotes the number of jobs

whose release time and deadline are both inside the time
interval with length l . For task τi , the upper bound on the
interference introduced by a higher priority task τ j within
the time interval of length l is given by

I D
j (l ,Ci ) = min

(
W D

j (l ), l −Ci +1
)

(2)

Then, a sufficient schedulability condition for task τi is
derived by considering a time interval of length Di

Di ≥ Ri =Ci +
⌊

1

m

∑
j∈hp(i )

I D
j (Di ,Ci )

⌋
(3)

It is obvious that the W D
j (Di ) and I D

j (Di ,Ci ) functions only
require the knowledge of D j , T j , and C j , which are all
independent from τ j ’s priority level. Hence, DA-test satisfies
the compatibility conditions of Audsley’s OPA algorithm [2].
DA-LC Test [2]. DA-LC improves DA test by limiting the
interference from carry-in jobs: at most m−1 higher priority
tasks can contribute to the carry-in workload. This leads to
the following schedulability condition for τi :

Di ≥ Ri =Ci+⌊
1

m

{ ∑
j∈hp(i )

I N
j (Di ,Ci )+ ∑

j∈�i�m−1

{
I D

j (Di ,Ci )− I N
j (Di ,Ci )

}}⌋
(4)

where �i�m−1 denotes the set of m − 1 tasks in hp(i )
that have the largest values of I D

j (Di ,Ci )− I N
j (Di ,Ci ), and

I N
j (Di ,Ci ) is the maximum interference from τ j if it has no

carry-in job. For an interval of length l , I N
j (l ,Ci ) is

I N
j (l ,Ci ) = min

{⌊
l

T j

⌋
C j +min(C j , l −

⌊
l

T j

⌋
T j ), l −Ck +1

}
(5)

Overall, the right-hand side of (4) achieves the maximum
value over any subset of m −1 tasks in hp(i ).

Like DA test, DA-LC still only relies on the parameters
T j , C j , and D j of a higher priority task τ j , which are all
independent from its priority. DA-LC is the most accurate
analysis that is compatible with OPA [2].
RTA Test [7]. RTA test is similar to DA test but with a more
accurate way to execute the carry-in job: the latest time that
a job can execute is at its worst-case response time rather
than at its deadline. Hence, the workload of τ j given in (1)
can be more accurately rewritten as

W R
j (l ) = N R

j (l ) ·C j +min
(
C j , l +R j −C j −N R

j (l ) ·T j

)
(6)

where N R
j (l ) =

⌊
l+R j −C j

T j

⌋
denotes the number of jobs of

τ j whose entire execution is inside the time interval with
length l . The response time of τi under G-FP is the least
fixed point solution of the following equation

Ri =Ci +
ÌÌÌÊ 1

m

∑
τ j ∈hp(i )

I R
j (Ri ,Ci )

ÍÍÍË (7)

where the inference I R
j (·, ·) of τ j now uses the new workload

function W R
j (·)

I R
j (l ,Ci ) = min

(
W R

j (l ), l −Ci +1
)

(8)

Since I R
j (Ri ,Ci ) now depends on τ j ’s response time R j , the

response time of τi not only relies on hp(i ) but also on the
relative order among the tasks in hp(i ). Thus, RTA test is
OPA-incompatible [2].
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RTA-LC Test [8]. RTA-LC, similar to DA-LC, is based on
the idea of limiting the interference from carry-in jobs.
RTA-LC uses R j as the latest completion time of a higher
priority task τ j as opposed to D j in DA-LC. This requires
the following modification to (4):

Ri =Ci +
⌊

1

m
Ωi (Ri )

⌋
(9)

where the function Ωi (·) is defined as

Ωi (l ) = ∑
j∈hp(i )

I N
j (l ,Ci )+ ∑

j∈�i�m−1

{
I R

j (l ,Ci )− I N
j (l ,Ci )

}
(10)

and the functions I N
j (·, ·) and I R

j (·, ·) are defined in (5)
and (8) respectively.

Like RTA, RTA-LC is OPA-incompatible due to its depen-
dency on R j , the response time of a higher priority task
τ j [2]. However, we show that our enhancement over OPA,
the MITER-based framework, is still compatible with RTA
and its improvement RTA-LC (see Section IV).
EPE-ZLL Test [9]. EPE-ZLL tries to reduce the overestima-
tion of interferences from all parts of the workload (carry-in,
body, carry-out), not just those from the carry-in. It derives
a lower bound on the accumulative time the target task and
higher priority tasks are executed in parallel, which can be
excluded from the interference.

To calculate Ri , EPE-ZLL uses an iterative process that
gradually increases the value of τi ’s execution time a from
one (i.e., a = 1) to its real value Ci (a = Ci ). At each
iteration, EPE-ZLL calculates the corresponding response
time U Ra+1

i based on the value of U Ra
i . Specifically, U Ra+1

i
is the minimal solution of the following equation

x ≥
⌊
Ψi (a, x)

m

⌋
+a +1 (11)

where Ψi (a, x) is defined as

Ψi (a, x) = min
{

m
(
U Ra

i −a
)+ ∑

j∈hp(i )∪{i }
W max

j ,i (a, x),

Ωi
(
x +U Ra

k

)}
(12)

Note that the calculation of Ωi
(
x +U Ra

i

)
follows (10), and

W max
j ,i (a, x) is calculated by an algorithm that requires the

relative priority order of those tasks in hp(i ) to determine
the worst case release times of interfering jobs [9]. Similar
to RTA-LC, EPE-ZLL is also incompatible with OPA. In
addition, even if we assume that the response times of all
tasks are known, the calculation of W max

j ,i (a, x) and hence
EPE-ZLL still require the relative priority order in hp(i ).

IV. MITER-GUIDED OPTIMIZATION ALGORITHM

In this section, we develop a novel optimization frame-
work that advances OPA, termed Maximal Unschedulable
response Time Estimation Range guided optimization algo-
rithm (in short, MITER). Like OPA, MITER is optimal if the
associated schedulability analysis satisfies its compatibility
conditions, but those conditions are more relaxed than OPA,
thus it can accommodate more accurate analysis that OPA
cannot, including RTA and RTA-LC.

Still, MITER is unable to use some of the sophisticated
but more accurate analyses such as EPE-ZLL. In this section,
by schedulability we only mean that there exists a priority
assignment that makes the system schedulable with respect
to the MITER-compatible analysis (and MITER will be able
to find it). It is possible that due to the inaccuracy of the
chosen analysis, even if MITER fails to find a schedula-
ble priority assignment, the system may still be deemed
schedulable with another more accurate analysis. Similarly,
optimality in this section is also in regard to the used
schedulability analysis.

A. Response Time Dependency

We first introduce the concept of response time depen-
dency (in short, RT dependency). It is the property that
the schedulability analysis shall satisfy in order to be used
together with MITER. Specifically, we assume the response
time Ri of task τi can be written in the following form

Ri = fi
(
hp(i ),R

)
, ∀τi (13)

where the function fi (·) takes as inputs hp(i ), the set of
higher priority tasks, and R, the vector of response time
estimations for all tasks. Note that if hp(i ) is given, l p(i )
is also determined since l p(i )

⋃
hp(i ) = Γ\{τi }. Thus, for

simplicity, we omit l p(i ) in the definition of fi .
The response time analysis written in the form of (13)

directly implies the following two assumptions

• A1: the response time Ri of τi , if the response times
of other tasks are known, depends on the set of higher
priority tasks hp(i ), but not on their relative order.

• A2: the response time Ri of τi , if the response times
of other tasks are known, depends on the set of lower
priority tasks l p(i ), but not on their relative order.

We assume (13) further satisfies two more conditions

• A3: the response time Ri of τi is monotonically non-
decreasing with the set of higher priority tasks hp(i ).
Specifically, given two sets of tasks hp(i ) and hp ′(i )
such that hp(i ) ⊆ hp ′(i ), the response time Ri with
hp ′(i ) as the higher priority tasks is no smaller than
that with hp(i ).

• A4: the response time Ri of τi is monotonically non-
decreasing with the increase of the response time R j

of any other task τ j .

Now we give the formal definition of RT dependency.

Definition 3. The response time analysis of a real-time
system Γ is said to be response time dependent (RT de-
pendent) if it satisfies the above four assumptions A1-A4.

Comparably, the compatibility conditions of OPA are

• A1’: the response time Ri of τi relies on hp(i ), the set
of higher priority tasks, but not on their relative order.

• A2’: the response time Ri of τi relies on the set of lower
priority tasks l p(i ), but not on their relative order.

• A3’: the same as A3 (it is rewritten differently than [2]).

It is easy to see that A1-A4 are a weaker requirement
than A1’-A3’, hence MITER may be optimal with a more
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accurate analysis than Audsley’s OPA. In fact, RTA and RTA-
LC are both proven to violate A1’-A3’ [2], but they can
be combined with MITER as they are RT dependent. We
formally state that in the following theorem.

Theorem 1. RTA and RTA-LC tests are RT-dependent.

Proof. We only prove property A4 for the two tests. The
rest of the proof is straightforward and can be found in the
online Appendix.

We first show that the workload function W R
j (·) as in

Equation (6) will be monotonically non-decreasing with
the increase of R j for any other task τ j ( j 6= i ). For any
schedulable system, we must have C j ≤ T j . We first show
W R

j (l ) is monotonic with R j when l +R j −C j ∈ [K ·T j , (K +
1)T j ), where the value of N R

j (l ) is always equal to K . Let

x = l +R j −C j −K ·T j , then W R
j (l ) = K ·C j +min(C j , x). We

consider two cases.

• Case 1: l +R j −C j ∈ [K ·T j ,K ·T j +C j ]. Then the value
of x will fall inside the interval [0,C j ]. The workload is

W R
j (l ) = K ·C j +x, x ∈ [0,C j ] (14)

which is a linear function of R j with a positive coeffi-
cient 1.

• Case 2: l + R j −C j ∈ [K · T j +C j , (K + 1) · T j ). x now
becomes no smaller than C j . Hence, the workload is a
constant in this case:

W R
j (l ) = K ·C j +C j , x ∈ [C j ,T j ) (15)

From the above two cases, we can conclude that when
l + R j − C j ∈ [K · T j , (K + 1) · T j ), the workload W R

j (l ) is
monotonically non-decreasing when R j increases. Now we
prove that when l +R j −C j = (K +1) ·T j (i.e., N R

j (l ) = K +1),
the workload is guaranteed to be larger than or equal to
the one when l +R j −C j = (K +1) ·T j −1. From the previous
discussion, we already know that

W R
j (l ) = K ·C j +C j , if l +R j −C j = (K +1) ·T j −1 (16)

When R j increases by one, we have

W R
j (l ) = (K +1) ·C j +min(C j ,0) (17)

= (K +1) ·C j , if l +R j −C j = (K +1) ·T j (18)

Therefore, the workload W R
j (l ) is monotonically non-

decreasing in the interval [K ·T j , (K+1)·T j ] for arbitrary inte-
ger K , and consequently it is monotonically non-decreasing
with R j .

This easily lets us conclude that the interference I R
j (·, ·)

in (8), and the response time for RTA in (7) are mono-
tonically non-decreasing with R j . For RTA-LC, the response
time in (9) additionally relies on I N

j (·, ·), but this function,
as defined in (5), is independent from R j . Hence, condition
A4 is satisfied for both RTA and RTA-LC.

On the contrary, EPE-ZLL test [9] does not satisfy the
conditions of RT dependency, since even if we assume
the response times of all tasks are known beforehand,
the relative priority orders are still required to determine
the worst-case combination of the release times for the
interfering jobs.

Theorem 2. EPE-ZLL test is not RT-dependent.

Proof. We leave the proof to the online Appendix.

B. Response Time Estimation Range

The response time analysis in (13) violates the conditions
of Audsley’s OPA. However, if the response times of every
task τ j ( j 6= i ) is appropriately estimated, then comput-
ing Ri in (13) only requires the knowledge of the set of
higher/lower priority tasks, and not the relative order in
them. This, combined with A3, allows us to leverage OPA
if the response times of all tasks can be estimated appropri-
ately. We first introduce the concepts and properties related
to response time estimations.

Definition 4. A Response time estimation (RTE) is de-
fined as a collection of tuples 〈τi ,ri 〉 for all tasks, i.e.,
E = {〈τ1,r1〉 , ...〈τn ,rn〉}. In each tuple 〈τi ,ri 〉, ri represents
the estimated response time of task τi where ri ∈ [Ci ,Di ].

For a given E , the estimation-inferred response time of τi

is calculated with the analysis in (13) assuming the response
times of other tasks follow the estimated value in E .

Definition 5. Given a priority assignment P and a response
time estimation E = {〈τ1,r1〉 , ...〈τn ,rn〉}, the estimation-
inferred response time of task τi is the least fixed point
solution of the following equation, denoted as RE

i ,

RE
i = fi

(
hp(i ),Ei

)
, ∀τi (19)

where Ei is a vector: the i -th entry of Ei is the variable RE
i ,

and the j -th entry for any j 6= i takes the corresponding
given value r j in E ,

Ei =
[
r1, . . . ,RE

i , . . . ,rn
]

(20)

The vector of estimation-inferred response times RE is
denoted as

RE = [
RE

1 ,RE
2 , . . . ,RE

n

]
(21)

Remark 1. With a given RTE E , the calculation of
estimation-inferred response time RE

i for task τi only de-
pends on the set of higher/lower priority tasks, but not on
their relative order.

A desired property of an RTE that secures a schedulable
priority assignment is given below (Definition 6). Moreover,
there must exist an RTE with this property if and only if
the system is schedulable (Theorem 3).

Definition 6. An RTE E = {〈τ1,r1〉 , ...〈τn ,rn〉} is defined as
feasible if and only if there exists a priority assignment
P such that the estimation-inferred response times are
component-wise no larger than E . That is, E is feasible
if and only if

∃P s.t . ∀i = 1..n, RE
i = fi

(
hp(i ),Ei

)≤ ri (22)

Theorem 3. A system Γ has a schedulable priority assign-
ment if and only if there exists a feasible RTE E [36].

Theorem 3 claims that instead of directly searching for
a feasible priority assignment, an alternative approach is

https://drive.google.com/file/d/1ig4jTu-MLGyVkxBpxjfYBG2DaiP1wCoF/view?usp=sharing
https://drive.google.com/file/d/1ig4jTu-MLGyVkxBpxjfYBG2DaiP1wCoF/view?usp=sharing
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to search for a response time estimation E that satisfies
Equation (22). Checking RTE E against Equation (22) can be
easily done using Audsley’s algorithm since the estimation-
inferred response depends only on the set of higher priority
tasks but not on their relative order.

The total number of response time estimations is
O(

∏
i Di ), which is obviously impractical to do an exhaustive

search. We propose a search space reduction technique that
greatly improves the algorithm efficiency. The idea is that
many infeasible RTEs share common reasons that violate
definition 6 so we can rule out similar infeasible RTEs from
the search space together to improve efficiency.

We first discuss the two conflicting requirements of an
RTE before giving a formal definition. For a given RTE
E = {〈τ1,r1〉 , ...〈τn ,rn〉}, consider any element 〈τi ,ri 〉, where
the estimated response time ri is used in two distinct
places in condition (22): (a) ri acts as an upper bound
for a feasible estimation-inferred response time RE

i of τi ;
(b) when computing the estimation-inferred response time
RE

j ( j 6= i ), ri is a constant entry in vector E j . Obviously for
(a), a larger value of ri is better but for (b), a smaller value
of ri is desirable since the estimation-inferred response
time RE

j is non-decreasing with ri (property A4). These two
conflicting requirements suggest that an infeasible RTE can
be generalized to a range of response time estimations such
that any of them falling inside this range will be infeasible
too.

Instead of using ri directly, we now split the estimation ri

into an optimistic estimation r l
i and a pessimistic one r u

i ,
where r l

i ≤ r u
i . As discussed above, now we use r u

i for (a)
and r l

i for (b), which will result in a weaker condition (26)
than (22). Suppose that this weaker condition (26) does not
even allow a schedulable priority assignment, then it can
be implied that any ri falling inside the range [r l

i ,r u
i ] would

be infeasible for the original condition (22).

We now formalize the idea with the following definitions.

Definition 7. A response time estimation range G is a
collection of tuple elements

〈
τi , [r l

i ,r u
i ]

〉
for each task τi ,

i.e., G = {
〈
τ1, [r l

1,r u
1 ]

〉
, ..

〈
τn , [r l

n ,r u
n ]

〉
}, where Ci ≤ r l

i ≤ r u
i ≤

Di . It represents a range of possible estimation values for
the actual response time Ri of each task τi .

Note that in the definition, we restrict [r l
i ,r u

i ] of each task
τi to be within [Ci ,Di ], as the response time Ri of τi for
any schedulable system shall be in that range.

Definition 8. A response time estimation E is said to be
contained in a response time estimation range G , denoted
as E ∈ G , if and only if for each 〈τi ,ri 〉 in E , the corre-
sponding range

〈
τi , [r l

i ,r u
i ]

〉
in G satisfies ri ∈ [r l

i ,r u
i ].

Definition 9. Given a response time estimation range
G = {

〈
τ1, [r l

1,r u
1 ], ..[r l

n ,r u
n ]

〉
} and a priority assignment P, the

estimation range-inferred response time of τi , denoted as
RG

i , is the least fixed point of the following equation

RG
i = fi

(
hp(i ),Gi

)
(23)

where Gi is a vector constructed by taking the i -th entry as
variable RG

i and any other j -th entry as the value r l
j from G

Gi =
[

r l
1, ...,RG

i , ...,r l
n

]
(24)

The vector of estimation range-inferred response times is
denoted as RG .

Intuitively, due to property A4, the estimation range-
inferred response time is essentially the smallest estimation
inferred response time that can possibly be obtained for
E ∈G , as shown in the following equation

∀E ∈G , ∀i , ∀ j 6= i , r j ≥ r l
j

⇒ ∀E ∈G , ∀i , RE
i ≥ RG

i (by property A4)
(25)

Also, given an estimation range, the analysis of estimation
range-inferred response times depends only on the set of
higher priority tasks but not on their relative order, hence
it is compliant with Audsley’s algorithm.

We now define the schedulability of a response time
estimation range as follows.

Definition 10. A response time estimation range G =
{
〈
τ1, [r l

1,r u
1 ]

〉
, ...

〈
τn , [r l

n ,r u
n ]

〉
} is said to be feasible if

∃P s.t . ∀i = 1..n, RG
i = fi (hp(i ),Gi ) ≤ r u

i (26)

Condition (26) is weaker than (22): it allows a smaller r l
i

than r u
i , hence easier to be satisfied than (22). Like (22),

(26) can be checked efficiently using Audsley’s algorithm.
The usefulness of the concept is shown in the following

theorem, which demonstrates that an infeasible response
time estimation range implies all its contained response
time estimations are infeasible. Unlike the case of infeasible
response time estimation range, its feasible version is less
useful in the sense that the contained RTE may or may not
be feasible.

Theorem 4. Given an infeasible response time estimation
range G = {

〈
τ1, [r l

1,r u
1 ]

〉
, ...

〈
τn , [r l

n ,r u
n ]

〉
}, any response time

estimation E ∈G is infeasible [36].

Definition 11. A response time estimation range G1 =
{
〈
τ1, [r l1

1 ,r u1
1 ]

〉
, ...

〈
τn , [r l1

n ,r u1
n ]

〉
} is a subset of another range

G2 = {
〈
τ1, [r l 2

1 ,r u2
1 ]

〉
, ...

〈
τn , [r l2

n ,r u2
n ]

〉
} if

∀i = 1..n, r l1
i ≥ r l2

i and r u1
i ≤ r u2

i (27)

G1 is said to be a strict subset of G2 if and only if G1 is a
subset of G2 and G1 6=G2.

We now define a class of infeasible response time es-
timation ranges that are not a strict subset of any other
infeasible ones. This can maximize its contained infeasible
RTEs.

Definition 12. A response time estimation range U is
a Maximal Infeasible response Time Estimation Range
(MITER)1 if and only if it satisfies the following conditions

1With a slight abuse of terminology, we use MITER to also refer to the
MITER-guided optimization framework. The meaning of MITER should be
clear from the context.
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Algorithm 1: Algorithm for Computing MITER

1 function MITER((infeasible RTE
E = {〈τ1,r1〉 , ...〈τn ,rn〉}))

2 G = {〈τ1, [r1,r1]〉 , ...〈τn , [rn ,rn]〉}
3 for each

〈
τi , [r l

i ,r u
i ]

〉 ∈G do
4 Use binary search to find out the smallest

value that r l
i can be decreased to while

keeping G infeasible.
5 Use binary search to find out the largest value

that r u
i can be increased to while keeping G

infeasible.
6 return G

• U is infeasible by Definition 10;
• For all G such that U ⊂G , G is feasible.

Remark 2. For the concept of response time estimation
range, we shall treat the subset relationship as a partial
order, i.e., G1 is no larger than G2 if G1 ⊆G2. Let S be the set
of all infeasible response time estimation ranges. A MITER
U by Definition 12 is essentially a “maximal” element of
S. Since the order among response time estimation ranges
is only partial, there may be multiple maximal elements of
S, i.e., multiple MITERs.

Intuitively, consider two infeasible response time estima-
tion ranges G1 and G2 such that G1 ⊆G2. G1 is redundant
in the presence of G2, since the latter contains all infeasible
RTEs contained in G1. In this sense, a MITER U is more
useful than any of its subset G (i.e., G ⊆U ), since it is more
efficient than G in capturing infeasible RTEs. We leverage
this property to rule out the most infeasible RTEs with
the fewest number of infeasible response time estimation
ranges.

An infeasible RTE E = {〈τ1,r1〉 , ...〈τn ,rn〉} can be gener-
alized into a MITER by Algorithm 1. We assume that the
initial input E satisfies ri ∈ [Ci ,Di ] for each task τi . We
will later show in Section IV-C how it can be guaranteed.
The algorithm first converts the RTE to a response time es-
timation range G = {〈τ1, [r1,r1]〉 , ...〈τn , [rn ,rn]〉} containing
only E itself (Line 2). Then it leverages the property that
condition (26) is monotonic w.r.t. each r l

i and r u
i : increasing

r u
i or decreasing r l

i can only make (26) easier to be satisfied.
It uses binary search to find out the minimum value that
r l

i can be decreased to (or the maximum value r u
i can be

increased to) while maintaining the unschedulability of G

(Lines 3–6).
Specifically, Line 4 preserves the values of r u

i and all other

response time estimation ranges
〈
τ j , [r l

j ,r u
j ]

〉
, i 6= j , and

uses binary search to decrease r l
i as much as G is infeasible.

By Definition 5, r l
i must be no smaller than Ci . Also, r l

i has
an initial value ri which is known to be infeasible. Thus,
the initial lower and upper bounds for the binary search of
r l

i are Ci and ri respectively. The binary search stops when
the lower and upper bounds converge (i.e., their difference
is no more than one, which is sufficient since all response

time estimations are integers). Line 5 is similar except that
(a) it increases r u

i , while keeping r l
i at the value determined

by Line 4; (b) the initial lower and upper bounds for r u
i are

ri and Di respectively.
At Lines 4–5, Audsley’s algorithm is used to check if the

resulting G is feasible, i.e., to see if it permits a priority
assignment that satisfies (26). Note that Audsley’s algorithm
only needs to explore O(n2) priority orders, r l

i is bounded
below by Ci ≤ Di , and r u

i is bounded above by Di , hence
Algorithm 1 checks a total of O(n2 logD) priority orders to
calculate a MITER, where D =∏

i Di , and n is the number
of tasks.

C. MITER-Guided Framework

By leveraging the concepts of RTE and MITER, we
present an optimization algorithm for systems with an RT-
dependent response time analysis. Finding a schedulable
priority assignment for such systems, including G-FP, is
particularly difficult since there is no known tractable pro-
cedure like Audsley’s algorithm. As in Theorem 3, finding a
schedulable priority assignment is equivalent to finding a
feasible RTE. The latter has the promise to be more scalable
for the following unique capability from Algorithm 1: it
can efficiently generalize a given infeasible RTE to a set
of MITERs, each of which contains a maximal range of
infeasible RTEs.

We design the optimization algorithm that leverages the
power of Algorithm 1. Instead of directly solving the original
problem O, we start with a relaxed problem X that leaves
out all the system schedulability constraints. If the obtained
RTE by solving X is infeasible, we use Algorithm 1 to gen-
eralize it to a set of MITERS. The corresponding constraints
are then added to problem X to rule out similar infeasible
RTEs, and the updated problem will be solved again. The
iterative procedure will terminate (i) if the obtained RTE is
feasible, which is guaranteed to be an optimal solution of
O, or (ii) X is deemed infeasible, which implies O is also
infeasible (see Theorem 5).

The procedure is illustrated in Figure 1. Step 1 checks if
the most relaxed response time estimation range is schedu-
lable. If yes, it enters the loop between Step 2 (solving the
relaxed problem X) and Step 3 (computing MITERs). The
details for each step is explained as follows.

Step 1. Let RL
i and RU

i denote the smallest and greatest
values of the response time of each task τi in any schedu-
lable priority assignment. In this paper, we assume RL

i =
Ci and RU

i = Di . Step 1 evaluates whether the response
time estimation range ζM = {〈τ1, [C1,D1]〉, ...〈τn , [Cn ,Dn]〉} is
schedulable. If not, then the systems must be unschedula-
ble by any priority assignment, and the algorithm reports
unschedulability and terminates.

Step 2. The second step searches for a response
time estimation that has not been deemed unschedula-
ble by the currently computed MITERs. This is done by
solving a relaxed problem X consisting of no schedu-
lability conditions but the implied constraints by the
computed MITERs. Specifically for each MITER U =
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Determine smallest and largest
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Fig. 1. MITER-guided priority assignment algorithm

{
〈
τ1, [r l

1,r u
1 ]

〉
, ...

〈
τn , [r l

n ,r u
n ]

〉
}, by Theorem 4 any feasible

RTE E = {〈τ1,r1〉 , ...〈τn ,rn〉} cannot be contained in U . This
implies the following constraint

E ∉U ⇔ ¬


r l

1 ≤ r1 ≤ r u
1

...

r l
n ≤ rn ≤ r u

n

⇔

∥∥∥∥∥∥∥∥
r1 < r l

1‖r1 > r u
1

...

rn < r l
n‖rn > r u

n

(28)

where ¬, {, and ‖ represent the logic-NOT, logic-AND, and
logic-OR operations, respectively. Thus, X just consists of
the objective and all the other constraints in O, while
replacing the system schedulability constraints with those
of (28) implied by all currently computed MITERs. X also
includes the response time estimations of all tasks [r1, ...rn]
as the additional design variables, as well as their initial
bounding constraints Ci ≤ ri ≤ Di ,∀i . In the problem of
priority assignment for G-FP, O has no objective and other
constraints, but only the system schedulability constraints.
Hence, problem X can be expressed as

X : min 1
s.t. Implied constraints of U as in (28), ∀ U ∈U

Ci ≤ ri ≤ Di ,∀i
(29)

where U is the set of currently known MITERs.
X can be solved using ILP solvers such as CPLEX. Note

that the logical disjunction constraint in (28) can be formu-
lated in ILP using the “big-M” method. For example,∥∥∥∥∥r1 < r l

1

r1 > r u
1

⇔
{

r1 < r l
1 +M ·b1

r1 > r u
1 −M · (1−b1)

(30)

Here b1 is an auxiliary binary variable, defined as

b1 =
{

0, if r1 < r l
1

1, if r1 > r u
1

(31)

M is a sufficiently large constant such as D1.
If X is infeasible (i.e., no solution satisfies all constraints

in X), then the system cannot be schedulable by any RTE
(see Theorem 5 below). Otherwise, solving X will return
an RTE (composed of the solution values assigned to the
decision variables [r1, ...rn]) that respects all the implied
constraints by the set of known MITERs U.

Step 3. This step evaluates the schedulability of the RTE
E returned in Step 2, i.e., whether it satisfies Equation (22).
If yes, then E is optimal, and the associated priority as-
signment P is an optimal priority assignment (proven in
Theorem 5). Here the priority assignment P can be obtained
as a byproduct of applying Audsley’s algorithm in checking
E against the condition (22).

If E is infeasible, it is generalized into a number of
MITERs using Algorithm 1. The implied constraints from
these newly discovered MITERs are then added to the
problem X, and we enter the next iteration. Here we set
an upper bound z on the number of MITERs generated
from a single infeasible RTE. In our experiments, we find
that z = 5 is a good setting in most cases. A set of examples
that explains the definitions and calculation processes of
the proposed concepts is included in our previous work
(i.e., Examples 1–8) [36].

The following theorem formally proves the correctness of
the proposed algorithm in Figure 1.

Theorem 5. The algorithm in Figure 1 guarantees
to terminate. Upon termination, it reports infeasibil-
ity/unschedulability if the original problem O is infeasible,
otherwise it returns a schedulable priority assignment that
is optimal with respect to the given objective [36].

Although the algorithm in Figure 1 is guaranteed to
terminate, in the worst case it may still require to compute
all MITERs. Consequently it needs O(

∏
i D2

i ) number of iter-
ations between Steps 2 and 3, as each iteration computes at
most z number of distinct MITERs, where z is a predefined
constant. Also, in each iteration it needs to solve an ILP
problem X. In the end, the algorithm still has exponential
worst-case complexity.

In the problem of priority assignment for G-FP, the main
advantage of MITER-guided framework compared to OPA
is its optimality with a more accurate analysis RTA-LC than
DA-LC, the most accurate analysis that can be used with
OPA. In our experiments, we show that MITER with RTA-LC
is consistently outperforming OPA with DA-LC (up to 30%
in acceptance ratio), despite that we limit the runtime of
the algorithms (see Section VI).

V. HYBRID ALGORITHM WITH MITER

Each of the two categories of priority assignment algo-
rithms for G-FP now has its own advantages: MITER with
RTA-LC, our advancement to OPA-based algorithms, can
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schedule more tasksets when the system utilization is low,
and DkC with EPE-ZLL, the best in the second category
(heuristic with any analysis that may be more accurate
than RTA-LC), works better for high system utilizations.
We prudently combine their strengths and present a hybrid
algorithm that significantly outperforms both.

We first briefly introduce the priority assignment process
in OPA [5]. All tasks are not assigned priorities at the begin-
ning. For each priority level, from lowest to the highest, OPA
selects a task τi and assigns the current priority level to it.
Assuming that all unassigned tasks have a higher priority
than τi , the schedulability of τi is tested with an OPA-
compatible test. If it is schedulable, the priority assignment
is successful and OPA proceeds to the next higher priority
level. If τi is unschedulable, the algorithm iteratively selects
another unassigned task and repeats the schedulability test.
If the whole set of unassigned tasks is traversed and no
schedulable task is found, then OPA returns unschedulable.
If all tasks are assigned priority levels at the end, the OPA
returns schedulable.

Our observation is that OPA is a powerful and efficient
algorithm, but it has one major limitation from its com-
patibility condition A1’ (A2’ and A3’ are actually satisfied
by most, if not all, schedulability tests including EPE-ZLL).
The proposed idea is that in OPA, when deciding if τi is
schedulable at a particular priority level, we may find a
way to temporarily approximate the priority order of higher
priority tasks hp(i ). This allows us to estimate the response
time Ri of τi , even if we use the OPA-incompatible analysis
EPE-ZLL.

Our new algorithm, called hybrid priority assignment
with MITER (or in short HP-MITER), is detailed in Algo-
rithm 2. Like OPA, it iteratively assigns a task to a priority
level starting from the lowest to the highest (Lines 2–
24). At each level p, it calculates the response time of
each unassigned task τi using EPE-ZLL (Line 12). However,
EPE-ZLL requires the total order among the set of higher
priority tasks hp(i ). Hence, we leverage the strengths of
the two categories of priority assignments for G-FP and
use a hybrid of MITER with RTA-LC and DkC with EPE-
ZLL to estimate the priority order among tasks in hp(i ).
When the total utilization of tasks in hp(i ) is lower than a
predefined threshold Θ (see next paragraph), MITER with
RTA-LC is utilized to get the total order in hp(i ) (Lines 6–
9). Otherwise, DkC is applied (Lines 10–11). Note this order
Php(i ) within hp(i ) is temporary and only used for the
purpose of determining the response time Ri of τi (Line 12)
or system schedulability (Line 14) while trying to assign τi

at priority level p.
Threshold. The threshold Θ is acting as a dividing line
between MITER with RTA-LC and DkC with EPE-ZLL. As
shown in [9, Fig. 13], EPE-ZLL is significantly more accurate
than RTA-LC when the system utilization is higher than
40%, otherwise, the difference between the two methods
is negligible. Since MITER is optimal and better than DkC
for MITER-compatible analysis such as RTA-LC, we set the
threshold Θ at 40%, with the hope that MITER can compen-
sate the small disadvantage of RTA-LC. Also, on varying the

Algorithm 2: Hybrid Priority Assignment with MITER

Input: Set of tasks Γ, Utilization threshold Θ
Use: Set of unassigned tasks ∆, Set of schedulable

tasks Γs at the given priority level
1 ∆= Γ
2 for each priority level p from lowest to highest do
3 Γs =;
4 for each unassigned task τi in ∆ do
5 hp(i ) =∆\{τi }
6 if Utilization of hp(i ) is lower than Θ then
7 Use MITER to find priority order Php(i ) for

tasks in hp(i )
8 if Unsuccessful then
9 continue to next τi

10 else
11 Use DkC to find priority order Php(i ) for

tasks in hp(i )

12 Calculate Ri of τi at priority p using EPE-ZLL
13 if Ri ≤ Di then
14 Check schedulability of Γ using EPE-ZLL
15 if Γ is schedulable then
16 Return schedulable

17 else
18 Add τi to Γs

19 if Γs 6= ; then
20 Assign p to the task τi in Γs with the largest

DkC value
21 ∆=∆\{τi }

22 else
23 Assign p to the task τi in ∆ with the smallest

lateness Ri −Di value
24 ∆=∆\{τi }

25 Return unschedulable

threshold from 0% to 100%, it is found that 40% gives the
overall best performance in both implicit and constrained
deadline cases. Note that this threshold is chosen for the
combination of MITER with RTA-LC and DkC with EPE-
ZLL, and it may not be the same for other combinations of
schedulability tests and priority assignment policies.

Algorithm 2 has a couple of noticeable designs that are
different from OPA, considering that the priority order Php(i )

may not be the same as in the final solution and the
estimated response time Ri may not be accurate. First,
in Lines 13–14, in the case that τi is schedulable at level
p, we opportunistically check whether the current priority
assignment (the temporary order Php(i ) for the set hp(i ),
τi at level p, and all other tasks follow the previously fixed
priority levels) happens to be schedulable according to EPE-
ZLL. If so, the algorithm terminates and returns the current
priority assignment. Second, if we find a schedulable task
at priority level p, instead of terminating immediately and
returning schedulability, we simply add this task to Γs , the
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set of schedulable tasks at level p (Line 18). Again, this is be-
cause Php(i ) is not necessarily the order in the final solution.
Third, if at least one candidate task is schedulable at the
current priority level (i.e., Γs is not empty), then we follow
the DkC policy and select the one in Γs with the largest
DkC value (Line 19–21). If none of them is schedulable,
instead of reporting unschedulability as in OPA, we select
the one with the smallest lateness Ri −Di among them and
continue to the next priority level (Lines 22–24), in the hope
that the small lateness may be erased by a different order
in hp(i ). Fourth, in the rare case that MITER is unable to
find any schedulable priority order for the set hp(i ), we
continue on to the next task in the set of unassigned tasks.
(Lines 8–9). Finally, the loop terminates at Line 25 returning
unschedulable in two cases: (1) if for a particular priority
level, MITER is always used to obtain the initial ordering
for hp(i ) and it is not able to find a feasible ordering for
any them, or (2) none of the priority levels lead to Line 14
returning true.

Another point we would like to clarify is the use of
schedulability analysis in Algorithm 2. Throughout the al-
gorithm we use EPE-ZLL, the most accurate analysis that
is still practical. The only exception is at Line 7, where the
MITER-guided framework is leveraged to find the temporary
priority order for hp(i ). We use RTA-LC at Line 7, the most
accurate analysis satisfying the compatibility conditions of
MITER.

VI. EXPERIMENTAL EVALUATION

In this section, we present the experimental results of
the proposed priority assignment algorithms as well as
other representative combinations of schedulability tests
and priority assignment algorithms. We perform two sets
of experiments, the first is to include most of the state-of-
the-art except the machine learning framework [25]. Due
to the lack of source code and training data from [25], we
were unable to duplicate its results. Hence, we use a second
set of experiments following the settings in [25] and make
an indirect comparison with it.

A. First Experiment

As summarized in Section I, the state-of-the-art can
be classified into two categories: an optimal priority as-
signment algorithm with an analysis that is compatible,
and a heuristic algorithm with a more accurate analysis.
Hence, we consider the following methods and compare
their performances in terms of acceptance ratio, i.e., the
percentage of tasksets that are deemed schedulable by each
method and the average runtime.

• OPA + DA-LC: Deadline Analysis with Limited Carry-in
(DA-LC test from [2]) with Audsley’s Optimal Priority
Assignment. This is the previous state-of-the-art in the
first category.

• MITER: This is our advancement in the first category. It
is optimal with RTA-LC, a more accurate analysis than
DA-LC.

• EPE-ZLL combined with three different heuristics DkC,
DMPO, and D-CMPO. They represent the state-of-the-
art in the second category.

• HP-MITER: The hybrid priority assignment algorithm
presented in Section V.

• HP-MITER without lateness: This is the version of Algo-
rithm 2 without Lines 22–24. This is done to evaluate
the effectiveness of using lateness when all tasks are
unschedulable at a priority level.

Since MITER has an exponential worst-case time com-
plexity, to avoid excessive runtime while ensuring a fair
comparison, we set the time limit of MITER to the same
value of 600 seconds both when used in HP-MITER and as
a stand-alone approach for comparison. When a timeout
occurs, the taskset is deemed unschedulable by MITER.

We consider the following number of processors and
tasks: (1) m = 4,n = 16, i.e., 4 processors and 16 tasks;
(2) m = 8,n = 32; (3) m = 16,n = 64. For each case, we
choose 30 system utilizations in the range of [0,m]. For
each utilization, 1000 random tasksets are generated, with
the following way to set the task parameters:

• Utilization: Task utilizations are generated using the
UUnifast-Discard algorithm [2].

• Period: Task periods are generated according to a log-
uniform distribution in the range [10, 1000].

• Execution time: Task execution times are calculated
based on the generated utilizations and periods: Ci =
Ui ·Ti .

• Deadline: We test the algorithms for two task models:
implicit deadline and constrained deadline. In the lat-
ter case, task deadlines are set according to a uniform
distribution in the range [Ci ,Ti ].

The experimental results are plotted in Figure 2, from
which we make a few interesting observations. First, MITER
with RTA-LC is always able to schedule (as much as 30%)
more tasksets than OPA + DA-LC. Since both are opti-
mal with respect to their schedulability analyses satisfying
the respective compatibility conditions, MITER’s superiority
comes from its ability to adopt a more accurate analysis
than OPA. Second, DkC is still a better heuristic than the
other two (DMPO and D-CMPO) with the new analysis EPE-
ZLL, consistent with the conclusion in [2] that uses RTA-LC
as the analysis. However, different than [2], the approaches
in the second category, in particular, DkC + EPE-ZLL is now
significantly better than the previous state-of-the-art OPA
+ DA-LC in the first category. Even compared to the new
frontier MITER with RTA-LC in the first category, DkC +
EPE-ZLL is still able to schedule more tasks at high system
utilization. This is mainly because the new advancement
in schedulability analysis, EPE-ZLL, is substantially more
accurate than RTA-LC or DA-LC, easily compensating the
disadvantage of a heuristic priority assignment policy like
DkC compared to optimal priority assignment algorithms.
Third, HP-MITER, taking advantages of both categories, is
outperforming the other methods across all settings. For
example, it improves OPA + DA-LC by up to 70% for implicit
deadline tasks, and by up to 80% for constrained deadline
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(a) m = 4,n = 16, implicit deadline (b) m = 8,n = 32, implicit deadline (c) m = 16,n = 64, implicit deadline

(d) m = 4,n = 16, constrained deadline (e) m = 8,n = 32, constrained deadline (f) m = 16,n = 64, constrained deadline

Fig. 2. Acceptance ratio of each method with varying utilization

Table I. Average Runtime for each Priority Assignment (+ Schedulability Test) in seconds

Type of
Deadline m DkC + EPE-ZLL DMPO + EPE-ZLL DCMPO + EPE-ZLL OPA + DA-LC MITER HP-MITER

HP-MITER
without lateness

Implicit
4p 0.7939 1.1108 0.8734 0.0029 42.4201 81.9924 27.1600
8p 4.7934 6.8357 5.6165 0.0110 96.2297 738.4391 182.1743

16p 23.4517 29.6310 26.5116 0.0395 118.4041 9824.9771 2299.8825

Constrained
4p 0.2587 0.2995 0.3221 0.0016 21.8565 129.9478 28.5039
8p 1.8508 1.7981 2.7669 0.0080 67.5505 961.5012 193.7253

16p 12.4310 8.1328 17.8814 0.0363 93.0550 10274.4882 2284.1387

tasks. Compared to DkC + EPE-ZLL, HP-MITER can be
better by a margin of 18% for tasks with implicit deadlines.
For tasks with constrained deadlines, the improvement of
HP-MITER over DkC + EPE-ZLL is even higher, with a
maximum difference of 25%. On comparing HP-MITER with
the version where lateness is not used, there is a small
but noticeable difference which decreases as the number of
processors increases. This implies that either (1) the case
where none of the tasks have a response time less than
deadline is very rare, or (2) whenever that case does occur,
the choice of using lateness does not have a large impact
on the schedulability.

The average runtimes of all the algorithms are presented
in Table I. It can be seen from the table that the combi-
nation of OPA and DA-LC is the fastest at the cost of the
lowest acceptance ratio. The heuristics with the EPE-ZLL
run slower due to the complexity of EPE-ZLL. Our proposed
methods, MITER and HP-MITER run several magnitudes
slower than other methods. This is expected as in the

worst case, the MITER will be called n2 number of times.
Omitting Lines 22–24 (lateness) could result in a better
runtime but sacrifice the acceptance for up to 9% when
compared to the original version of HP-MITER. As the
proposed algorithm is used in an offline setting and the
aim is to find more schedulable tasksets that are deemed
unschedulable by existing methods, the runtime of HP-
MITER remains acceptable for the acceptance ratio that it
provides.

B. Second Experiment

In the second experiment, we make an effort to com-
pare with the ML framework [25]. We follow the same
experimental settings as in [25] and use ZLL [15] as a
common method for comparison. Specifically, we consider
systems with m = 2,4,6 processors, and vary the number
of tasks n as follows: m = 2,n ∈ [6,15]; m = 4,n ∈ [11,20];
and m = 6,n ∈ [16,25]. The task parameters are generated
as follows:
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(a) m = 2 with 6 ≤ n ≤ 15 (b) m = 4 with 11 ≤ n ≤ 20 (c) m = 6 with 16 ≤ n ≤ 25

Fig. 3. Percentage of schedulable tasksets with varying number of tasks

• Utilization: When setting the task utilizations in a
taskset, first one of the following ten distributions is
selected randomly: binomial and exponential distribu-
tions, each with constants 0.1, 0.3, 0.5, 0.7, and 0.9.
Then for each of the tasks, its utilization is generated
according to the same selected distribution.

• Period: it is randomly generated following a log-
uniform distribution in the range of [10,1000].

• Execution time: it is calculated by the multiplication of
Ti ×Ui for each task τi .

• Deadline: all tasks have implicit deadlines, i.e., Di = Ti .

After these task parameters are created, the taskset is tested
and discarded if it is (1) schedulable by RTA-LC with the
heuristics DkC [24], D-CMPO [11] or DMPO [10], (2) not
schedulable according to the C-RTA condition [2], which is
a necessary but not sufficient condition for a taskset to be
schedulable by RTA-LC [8], and (3) schedulable by DA-LC
test [2] with Audsley’s OPA [5]. For each (m,n) pair, 1000
tasksets are generated.

Below is the list of methods compared in this experiment:

• ZLL: The baseline in [25] using the three heuristic
priority assignment policies (DkC, DMPO, D-CMPO)
with ZLL as the schedulability analysis [15]. That is,
a taskset is schedulable by this baseline if any of the
three policies with ZLL deems it schedulable.

• EPE-ZLL: The same as the above method except using
EPE-ZLL [9] as the schedulability analysis instead of
ZLL [15].

• MITER: The same as in the previous experiment.
• HP-MITER: The same as in the previous experiment.

We present the results in Figure 3, where the y-axis gives
the percentage of schedulable tasksets among those that are
deemed schedulable by at least one of the four methods.
In all cases, across all values of n, HP-MITER is able to
find a feasible priority ordering for at least 85% of the
time, consistently outperforming all the other methods. The
average difference between HP-MITER and ZLL is around
10% for m = 2, 35% for m = 4, and 55% for m = 6. As
reported in [25], the ML framework is outperformed by
ZLL when (1) m = 2,n ∈ [11,15]; (2) m = 4,n = 20; (3)
m = 6,n = 21,24,25. Even when ML is better than ZLL, the
maximum advantage is about 40%. These results provide

an indirect proof that HP-MITER is potentially able to find
schedulable priority assignments for more tasksets than the
ML framework. It must be noted that this result is expected
as [25] uses RTA-LC, which is a less accurate schedulability
test than EPE-ZLL, as its basis.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of priority assign-
ment for global fixed priority scheduling on a multiproces-
sor platform. We first propose a framework, MITER, that
leverages the concept of response time estimation range. It
remains optimal for a broader range of response time anal-
ysis techniques than Audsley’s optimal priority assignment
algorithm. We then present an algorithm that judiciously
takes advantage of both MITER and heuristic algorithms.
Experimental results with various synthetic tasksets show
that the proposed approach significantly outperforms the
state-of-the-art algorithms. For future work, we consider ex-
tending our optimization framework to different scheduling
algorithms and task models, such as global dynamic priority
scheduling and the arbitrary deadline task model.
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